216 lines
5.4 KiB
Plaintext
216 lines
5.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"*this notebook works in any Sandbox environments* "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Webcam (audio/video) processing\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Usage:\n",
|
|
"\n",
|
|
"Using `ipywebrtc` you can create a `MediaStream` out of:\n",
|
|
"- Any ipywidget using `WidgetStream`\n",
|
|
"- A video file using `VideoStream`\n",
|
|
"- An image file using `ImageStream`\n",
|
|
"- An audio file using `AudioStream`\n",
|
|
"- Your webcam/camera using `CameraStream`\n",
|
|
"\n",
|
|
"From this `MediaStream` you can:\n",
|
|
"- Record a movie using `VideoRecorder`\n",
|
|
"- Record an image snapshot using `ImageRecorder`\n",
|
|
"- Record an audio fragment using `AudioRecorder`\n",
|
|
"- Stream it to peers using the simple `chat` function."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from ipywebrtc import CameraStream, ImageRecorder, VideoRecorder, AudioRecorder"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"camera = CameraStream(constraints=\n",
|
|
" {'facing_mode': 'user',\n",
|
|
" 'audio': False,\n",
|
|
" 'video': { 'width': 320, 'height': 240 }\n",
|
|
" })\n",
|
|
"#camera"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from ipywidgets import Image, HBox\n",
|
|
"import PIL.Image\n",
|
|
"import io\n",
|
|
"import numpy as np\n",
|
|
"from skimage.filters import sobel\n",
|
|
"from skimage.color.adapt_rgb import adapt_rgb, each_channel\n",
|
|
"from skimage import filters"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"image_recorder = ImageRecorder(stream=camera)\n",
|
|
"image_recorder.recording = True\n",
|
|
"#image_recorder"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import cv2\n",
|
|
"face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')\n",
|
|
"eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def get_detected_eye(face): \n",
|
|
" img = face.copy() \n",
|
|
" fr = face_cascade.detectMultiScale(img) \n",
|
|
" for (x,y,w,h) in fr:\n",
|
|
" cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)\n",
|
|
" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n",
|
|
" roi_gray = gray[y:y+h, x:x+w]\n",
|
|
" roi_color = img[y:y+h, x:x+w]\n",
|
|
" eyes = eye_cascade.detectMultiScale(roi_color, scaleFactor=1.5, minNeighbors=5)\n",
|
|
" print(\"Found {0} eyes!\".format(len(eyes)))\n",
|
|
" for (ex,ey,ew,eh) in eyes:\n",
|
|
" cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)\n",
|
|
" return img"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Press the Camera Button to start"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"editable": true,
|
|
"slideshow": {
|
|
"slide_type": ""
|
|
},
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"HBox(children=(Image(value=b''), ImageRecorder(image=Image(value=b\"\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00…"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Press the Camera Button to start\n",
|
|
"out = Image()\n",
|
|
"stop_process = False\n",
|
|
"\n",
|
|
"def process_image(_):\n",
|
|
" if stop_process:\n",
|
|
" return\n",
|
|
" im_in = PIL.Image.open(io.BytesIO(image_recorder.image.value))\n",
|
|
" # result = get_detected_face(np.array(im_in)[...,:3])\n",
|
|
" result = get_detected_eye(np.array(im_in)[...,:3])\n",
|
|
" \n",
|
|
" im_out = PIL.Image.fromarray(result)\n",
|
|
" f = io.BytesIO()\n",
|
|
" im_out.save(f, format='jpeg')\n",
|
|
" out.value = f.getvalue()\n",
|
|
" image_recorder.recording = True\n",
|
|
"\n",
|
|
"image_recorder.image.observe(process_image, names=['value'])\n",
|
|
"image_recorder.recording = True\n",
|
|
"HBox([out, image_recorder])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"stop_process = True"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from ipywidgets import Widget\n",
|
|
"Widget.close_all()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|