rem mat
ci/woodpecker/push/woodpecker Pipeline was successful Details

This commit is contained in:
Malte Grosse 2023-11-30 09:58:35 +09:00
parent c1c2795e42
commit 45d58b7723
1 changed files with 52 additions and 2 deletions

54
run.py
View File

@ -1,6 +1,6 @@
import tensorflow as tf import tensorflow as tf
from tensorflow import keras from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np import numpy as np
import os import os
# Version Information # Version Information
@ -26,4 +26,54 @@ print(tf.test.is_built_with_cuda())
(X_train, y_train), (X_test,y_test) = tf.keras.datasets.cifar10.load_data() (X_train, y_train), (X_test,y_test) = tf.keras.datasets.cifar10.load_data()
print(X_train.shape,y_train.shape) print(X_train.shape,y_train.shape)
classes = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"]
print(classes[y_train[3][0]])
print("pre processing: scale images")
X_train_scaled = X_train / 255
X_test_scaled = X_test / 255
y_train_categorical = keras.utils.to_categorical(
y_train, num_classes=10, dtype='float32'
)
y_test_categorical = keras.utils.to_categorical(
y_test, num_classes=10, dtype='float32'
)
print("model build")
model = keras.Sequential([
keras.layers.Flatten(input_shape=(32,32,3)),
keras.layers.Dense(300, activation='relu'),
keras.layers.Dense(100, activation='relu'),
keras.layers.Dense(10, activation='sigmoid')
])
model.compile(optimizer='SGD',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train_scaled, y_train_categorical, epochs=1)
def get_model():
model = keras.Sequential([
keras.layers.Flatten(input_shape=(32,32,3)),
keras.layers.Dense(3000, activation='relu'),
keras.layers.Dense(1000, activation='relu'),
keras.layers.Dense(10, activation='sigmoid')
])
model.compile(optimizer='SGD',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
with tf.device('/GPU:0'):
cpu_model = get_model()
cpu_model.fit(X_train_scaled, y_train_categorical, epochs=10)
print("done")