rem mat
ci/woodpecker/push/woodpecker Pipeline was successful
Details
ci/woodpecker/push/woodpecker Pipeline was successful
Details
This commit is contained in:
parent
c1c2795e42
commit
45d58b7723
54
run.py
54
run.py
|
@ -1,6 +1,6 @@
|
|||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
# Version Information
|
||||
|
@ -26,4 +26,54 @@ print(tf.test.is_built_with_cuda())
|
|||
|
||||
(X_train, y_train), (X_test,y_test) = tf.keras.datasets.cifar10.load_data()
|
||||
|
||||
print(X_train.shape,y_train.shape)
|
||||
print(X_train.shape,y_train.shape)
|
||||
|
||||
classes = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"]
|
||||
|
||||
print(classes[y_train[3][0]])
|
||||
|
||||
print("pre processing: scale images")
|
||||
|
||||
X_train_scaled = X_train / 255
|
||||
X_test_scaled = X_test / 255
|
||||
|
||||
y_train_categorical = keras.utils.to_categorical(
|
||||
y_train, num_classes=10, dtype='float32'
|
||||
)
|
||||
y_test_categorical = keras.utils.to_categorical(
|
||||
y_test, num_classes=10, dtype='float32'
|
||||
)
|
||||
|
||||
print("model build")
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Flatten(input_shape=(32,32,3)),
|
||||
keras.layers.Dense(300, activation='relu'),
|
||||
keras.layers.Dense(100, activation='relu'),
|
||||
keras.layers.Dense(10, activation='sigmoid')
|
||||
])
|
||||
|
||||
model.compile(optimizer='SGD',
|
||||
loss='categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
model.fit(X_train_scaled, y_train_categorical, epochs=1)
|
||||
|
||||
def get_model():
|
||||
model = keras.Sequential([
|
||||
keras.layers.Flatten(input_shape=(32,32,3)),
|
||||
keras.layers.Dense(3000, activation='relu'),
|
||||
keras.layers.Dense(1000, activation='relu'),
|
||||
keras.layers.Dense(10, activation='sigmoid')
|
||||
])
|
||||
|
||||
model.compile(optimizer='SGD',
|
||||
loss='categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
return model
|
||||
|
||||
with tf.device('/GPU:0'):
|
||||
cpu_model = get_model()
|
||||
cpu_model.fit(X_train_scaled, y_train_categorical, epochs=10)
|
||||
|
||||
print("done")
|
Loading…
Reference in New Issue