Compare commits

...

9 Commits
matrix ... main

Author SHA1 Message Date
Malte Grosse 4323d3ebf3 try
ci/woodpecker/push/woodpecker Pipeline was successful Details
2024-10-07 11:37:59 +02:00
Malte Grosse ef9e32ae72 testlere 2024-09-25 11:05:33 +02:00
Malte Grosse 3d33eae029 test
ci/woodpecker/push/woodpecker Pipeline was successful Details
2024-06-24 14:20:44 +02:00
Malte Grosse ce15825a91 test
ci/woodpecker/push/woodpecker Pipeline was successful Details
2024-06-24 08:59:56 +02:00
Cornelius Specht 5475e022df changed to orignial tf model
ci/woodpecker/push/woodpecker Pipeline was successful Details
2024-06-20 10:18:04 +02:00
Cornelius Specht aac0ddad01 add readme
ci/woodpecker/push/woodpecker Pipeline was successful Details
2024-06-14 13:06:47 +02:00
Malte Grosse f707547267 3rd
ci/woodpecker/push/woodpecker Pipeline was successful Details
2023-11-30 20:37:15 +09:00
Malte Grosse 49fbd0c8c2 exec
ci/woodpecker/push/woodpecker Pipeline is pending Details
2023-11-30 20:22:14 +09:00
Malte Grosse b4dcf6632a v2 example
ci/woodpecker/push/woodpecker Pipeline was successful Details
2023-11-29 08:48:56 +09:00
3 changed files with 103 additions and 29 deletions

View File

@ -1,32 +1,13 @@
platform: linux/amd64 steps:
pipeline: "train":
first-job: image: nvcr.io/nvidia/tensorflow:23.10-tf2-py3
image: busybox
commands: commands:
- echo "ci working................. " - echo "starting python scrip sd "
cpu: - python run.py
image: progrium/stress:latest "compress and upload":
commands: /usr/bin/stress --cpu 20 --io 1 --vm 2 --vm-bytes 128M --timeout 90s image: alpine:3
nvidia-test:
image: nvidia/cuda:11.6.2-base-ubuntu20.04
commands:
- nvidia-smi
environment:
- NVIDIA_VISIBLE_DEVICES=all
gpu:
image: oguzpastirmaci/gpu-burn:latest
environment:
- NVIDIA_VISIBLE_DEVICES=all
commands: commands:
- cd /app - apk --no-cache add zip curl
- ./gpu_burn 120 - zip mymodel.zip mymodel.keras
- echo "burned. done" - curl -F fileUpload=@mymodel.zip https://share.storage.sandbox.iuk.hdm-stuttgart.de/upload
# 2nd:
# image: oguzpastirmaci/gpu-burn:latest
# environment:
# - NVIDIA_VISIBLE_DEVICES=all
# commands:
# - ./gpu_burn 60

4
README.md Normal file
View File

@ -0,0 +1,4 @@
# Long Running Trainings
This repository contains an example pipeline for long running training tasks.
Detailed information can be found at the official [Sandbox Documentation](https://docs.sandbox.iuk.hdm-stuttgart.de/sandbox/training.html).

89
run.py Normal file
View File

@ -0,0 +1,89 @@
import tensorflow as tf
from tensorflow import keras
import requests
import numpy as np
import os
# Version Information
# tensorflow 2.2.0 , Cudnn7.6.5 and Cuda 10.1 , python 3.8
from keras import backend as K
K.clear_session()
gpus = tf.config.experimental.list_physical_devices('GPU')
# if gpus:
# try:
# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=6024)])
# except RuntimeError as e:
# print(e)
# os.exit(1)
print(tf.config.experimental.list_physical_devices())
print("test")
print(tf.__version__)
print(tf.test.is_built_with_cuda())
(X_train, y_train), (X_test,y_test) = tf.keras.datasets.cifar10.load_data()
(X_train, y_train), (X_test,y_test) = tf.keras.datasets.cifar10.load_data()
print(X_train.shape,y_train.shape)
classes = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"]
print(classes[y_train[3][0]])
print("pre processing: scale images")
X_train_scaled = X_train / 255
X_test_scaled = X_test / 255
y_train_categorical = keras.utils.to_categorical(
y_train, num_classes=10, dtype='float32'
)
y_test_categorical = keras.utils.to_categorical(
y_test, num_classes=10, dtype='float32'
)
print("model build")
def get_model():
model = keras.Sequential([
keras.layers.Flatten(input_shape=(32,32,3)),
keras.layers.Dense(3000, activation='relu'),
keras.layers.Dense(1000, activation='relu'),
keras.layers.Dense(10, activation='sigmoid')
])
model.compile(optimizer='SGD',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
with tf.device('/GPU:0'):
model = keras.Sequential([
keras.layers.Flatten(input_shape=(32,32,3)),
keras.layers.Dense(3000, activation='relu'),
keras.layers.Dense(1000, activation='relu'),
keras.layers.Dense(10, activation='sigmoid')
])
# g
model.compile(optimizer='SGD',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train_scaled, y_train_categorical, epochs=25)
model.save('mymodel.keras')
print("finished training")
myurl = 'https://share.storage.sandbox.iuk.hdm-stuttgart.de/upload'
print("uploading file")
files = {
'fileUpload':('mymodel.keras', open('mymodel.keras', 'rb'),'application/octet-stream')
}
response = requests.post(myurl, files=files)
print(response,response.text)
print("done")