Compare commits
9 Commits
Author | SHA1 | Date |
---|---|---|
Malte Grosse | 4323d3ebf3 | |
Malte Grosse | ef9e32ae72 | |
Malte Grosse | 3d33eae029 | |
Malte Grosse | ce15825a91 | |
Cornelius Specht | 5475e022df | |
Cornelius Specht | aac0ddad01 | |
Malte Grosse | f707547267 | |
Malte Grosse | 49fbd0c8c2 | |
Malte Grosse | b4dcf6632a |
|
@ -1,16 +1,8 @@
|
|||
matrix:
|
||||
EPOCHS:
|
||||
- 20
|
||||
- 30
|
||||
OPTIMIZER:
|
||||
- adam
|
||||
- SGD
|
||||
|
||||
steps:
|
||||
"train":
|
||||
image: nvcr.io/nvidia/tensorflow:23.10-tf2-py3
|
||||
commands:
|
||||
- echo "starting python script"
|
||||
- echo "starting python scrip sd "
|
||||
- python run.py
|
||||
"compress and upload":
|
||||
image: alpine:3
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
# Long Running Trainings
|
||||
|
||||
This repository contains an example pipeline for long running training tasks.
|
||||
Detailed information can be found at the official [Sandbox Documentation](https://docs.sandbox.iuk.hdm-stuttgart.de/sandbox/training.html).
|
10
run.py
10
run.py
|
@ -8,10 +8,6 @@ import os
|
|||
from keras import backend as K
|
||||
K.clear_session()
|
||||
|
||||
EPOCHS = int(os.getenv("EPOCHS", default = 10))
|
||||
OPTIMIZER = os.getenv("OPTIMIZER", default = "SGD")
|
||||
|
||||
|
||||
gpus = tf.config.experimental.list_physical_devices('GPU')
|
||||
# if gpus:
|
||||
# try:
|
||||
|
@ -21,7 +17,7 @@ gpus = tf.config.experimental.list_physical_devices('GPU')
|
|||
# os.exit(1)
|
||||
|
||||
print(tf.config.experimental.list_physical_devices())
|
||||
|
||||
print("test")
|
||||
print(tf.__version__)
|
||||
|
||||
print(tf.test.is_built_with_cuda())
|
||||
|
@ -72,10 +68,10 @@ with tf.device('/GPU:0'):
|
|||
keras.layers.Dense(10, activation='sigmoid')
|
||||
])
|
||||
# g
|
||||
model.compile(optimizer=OPTIMIZER,
|
||||
model.compile(optimizer='SGD',
|
||||
loss='categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
model.fit(X_train_scaled, y_train_categorical, epochs=EPOCHS)
|
||||
model.fit(X_train_scaled, y_train_categorical, epochs=25)
|
||||
model.save('mymodel.keras')
|
||||
|
||||
print("finished training")
|
||||
|
|
Loading…
Reference in New Issue