import tensorflow as tf from tensorflow import keras import requests import numpy as np import os # Version Information # tensorflow 2.2.0 , Cudnn7.6.5 and Cuda 10.1 , python 3.8 from keras import backend as K K.clear_session() gpus = tf.config.experimental.list_physical_devices('GPU') # if gpus: # try: # tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=6024)]) # except RuntimeError as e: # print(e) # os.exit(1) print(tf.config.experimental.list_physical_devices()) print("test") print(tf.__version__) print(tf.test.is_built_with_cuda()) (X_train, y_train), (X_test,y_test) = tf.keras.datasets.cifar10.load_data() (X_train, y_train), (X_test,y_test) = tf.keras.datasets.cifar10.load_data() print(X_train.shape,y_train.shape) classes = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"] print(classes[y_train[3][0]]) print("pre processing: scale images") X_train_scaled = X_train / 255 X_test_scaled = X_test / 255 y_train_categorical = keras.utils.to_categorical( y_train, num_classes=10, dtype='float32' ) y_test_categorical = keras.utils.to_categorical( y_test, num_classes=10, dtype='float32' ) print("model build") def get_model(): model = keras.Sequential([ keras.layers.Flatten(input_shape=(32,32,3)), keras.layers.Dense(3000, activation='relu'), keras.layers.Dense(1000, activation='relu'), keras.layers.Dense(10, activation='sigmoid') ]) model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accuracy']) return model with tf.device('/GPU:0'): model = keras.Sequential([ keras.layers.Flatten(input_shape=(32,32,3)), keras.layers.Dense(3000, activation='relu'), keras.layers.Dense(1000, activation='relu'), keras.layers.Dense(10, activation='sigmoid') ]) # g model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train_scaled, y_train_categorical, epochs=25) model.save('mymodel.keras') print("finished training") myurl = 'https://share.storage.sandbox.iuk.hdm-stuttgart.de/upload' print("uploading file") files = { 'fileUpload':('mymodel.keras', open('mymodel.keras', 'rb'),'application/octet-stream') } response = requests.post(myurl, files=files) print(response,response.text) print("done")